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Dielectric Analysis of Sol—Gel Transition of k-Carrageenan with

Scaling Concept

Shinya Ikeda' and Hitoshi Kumagai*

Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi,
Bunkyo-ku, Tokyo 113, Japan

The dielectric properties of a typical ionic food polysaccharide, k-carrageenan, were investigated
with special relevance to the sol—gel transition of its dispersed system. The dielectric relaxation
around 1 MHz due to counterions bound to the polyelectrolyte was analyzed. For the disordered
(coil) state of x-carrageenan solutions, dependence of the dielectric increment, Ae¢, and that of the
relaxation time, 7, on the polymer concentration, C, were summarized as Ae 00 C° and 7 0 C71,
respectively, in good agreement with the scaling relations for the semidilute solutions derived from
the polyelectrolyte solution theories. For the ordered (helix) state of k-carrageenan dispersed systems,
the values of the dielectric parameters, Ae and 7, were larger than the predicted values using the
scaling equations for the semidilute solutions. The deviation between the measured and predicted
values can be understood as a result of the association of the helical conformers in gels.
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INTRODUCTION

Gel-forming natural polysaccharides are commonly
used in food industries for controlling physical proper-
ties and functionalities of food products such as texture,
stability, and the water-holding or thermal properties.
Knowledge of the macroscopic properties of food polysac-
charide systems has been accumulated through apply-
ing various techniques such as rheological measure-
ments, differential scanning calorimetry (DSC), light or
X-ray scattering, circular dichroism (CD), and so forth
(Clark and Ross-Murphy, 1987; Stephen, 1995). How-
ever, only the correlation between the composition and
the properties is discussed qualitatively in many cases.
Because the physical properties are considered to result
from the interaction and structure within these systems,
analysis of the structure contributing to the physical
properties is needed for food polysaccharide dispersed
systems.

Most of the important food polysaccharides, «-carra-
geenan, alginate, or xanthan, etc., are polyelectrolytes
consisting of saccharide repeating units with ionic
groups. The physical properties of the polyelectrolyte
dispersed systems are significantly related to the elec-
trostatic interactions arising from Coulomb interactions
among the fixed charges on the polymer and its coun-
terions (Oosawa, 1971). Because the dielectric proper-
ties are one of the most sensitive properties to such
electrostatic interactions, we have been investigating
the dielectric properties of several food polysaccharides
such as «-carrageenan, alginate, and gellan gum (lkeda
etal., 1997a,b; Ikeda and Kumagai, 1997). Some of the
counterions are electrostatically bound to the polyelec-
trolyte in such systems. While free counterions con-
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tribute to the conductance properties of the system, the
bound counterions contribute to the dielectric properties
and would cause a dielectric relaxation phenomenon
(Blythe, 1979; Mandel and Odijk, 1984; Ookubo et al.,
1989; Ito et al., 1990). In our investigation (Ikeda et
al., 1997a), the dynamic behavior of such bound coun-
terions to the ionic polysaccharides was observed as
dielectric relaxation around megahertz frequency in
accordance with the previous results for a linear syn-
thetic polyelectrolyte (Ito et al., 1990). The two dielec-
tric parameters characterizing the relaxation, the di-
electric increment Ae and the relaxation time z, were
confirmed to reflect the amount of the bound counterions
and the average distance between adjacent polymers in
the solution, respectively. In addition, the concentration
dependence of the two dielectric parameters, Ae and t,
was consistent with the scaling law derived from the
polyelectrolyte theories (Ito et al., 1990), namely, Ae [
CU3, 7 0 C~28 at the dilute region where polymer chains
were dispersed independently and Ae 0 C° 7 O C ! at
the semidilute region where the polymer chains overlap.

The scaling theory adopted to the dielectric analysis
of natural polysaccharides is a relatively recent ap-
proach for analyzing the physical properties of polymer
dispersed systems. On the basis of the theory, formulas
for describing the correlation of the polymer dispersed
structure with physical properties such as dielectricity,
viscosity, osmotic pressure, and diffusion have already
been proposed (Ito et al., 1990; Rubinstein et al., 1994;
Dobrynin et al.,, 1995; Bordi et al., 1996). In our
preceding work (lkeda and Kumagai, 1997), the con-
centration dependence of the dielectric properties and
that of the viscosity for the alginate solutions agreed
with the respective scaling equations. In addition, the
crossover concentration from the dilute to semidilute
region obtained by the dielectric analysis was almost
identical to that obtained by the viscosity measurement.
These results suggest that the physical properties of the
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food polysaccharide solutions are systematically under-
standable on the basis of the scaling concept. A scaling
approach with the dielectric measurement, therefore,
is expected to provide useful information for compre-
hensive understanding of the producing mechanism of
the physical properties of ionic polysaccharide dispersed
systems.

k-Carrageenan, which is ideally composed of alternat-
ing f(1—3)-p-galactose-4-sulfate and a(1—4)-3,6-anhy-
dro-p-galactose repeating units, extracted from marine
red algae, is well-known for its thermoreversible gel-
forming properties and is a particularly important
polysaccharide in the food industry as a gelling agent.
Both the rheological behavior and the gel formation
have been extensively investigated from physicochem-
ical point of views (Piculell, 1995). When the temper-
ature is lowered, the coil (disordered) state of «-carra-
geenan transfers into a helix (ordered) state. The
helices are believed to associate into rigid rods, which
can align themselves into long supermolecular as-
semblies, in the presence of specific cation salts such
as KCI (Hermansson, 1989).

coil (disordered) <
helix (ordered) < helix aggregation to gel

It is commonly accepted that a coil-to-helix transition
is a necessary requirement for k-carrageenan to initiate
the gel network generation, but the nature of this
conformation is still unclear and the exact mechanism
of the reaction has remained largely unsolved (Morris
etal., 1980a,b; Paoletti et al., 1984; Viebke et al., 1994).
As a result, the prediction of the physical properties of
the «-carrageenan dispersed systems is not yet possible.
Natural polymers that undergo coil—helix transition are
typically polyelectrolytes (e.g., DNA, polypeptides,
polysaccharides), and x-carrageenan would therefore be
a good model substance for evaluating the polymer
dispersed state resulting from electrostatic interaction
on such a transition.

The dielectric response of the food polysaccharides to
the coil—helix transition has scarcely been investigated,
much less the sol—gel transition. We have already
reported on the dielectric analysis of xk-carrageenan in
potassium and the sodium salt form (lkeda et al.,
1997a), but the experimental condition did not allow
sol—gel transition. In this paper, we apply the dielectric
method for analyzing the sol—gel transition of x-carra-
geenan. First, we analyze the conformational state of
k-carrageenan dependent on temperature and concen-
tration, thereby gaining information on the helical
fraction and the association of the helices in gels. The
dielectric properties for the disordered and ordered
k-carrageenan were then comparatively analyzed on the
basis of the scaling concept because that method has
an advantage for analyzing the polymer dispersed
structure contributing to the physical properties of the
system.

EXPERIMENTAL PROCEDURES

Materials. «-Carrageenan (Sigma, Lot 16H0616) contain-
ing a few percent of metal ions (K, 7.3% (w/w); Na, 0.7% (w/
w); Ca, 2.2% (w/w)) was used without further purification
because the existence of the metal ions is a prerequisite for
helix association to occur. The analysis on the purified sample
has already been reported (Ikeda et al., 1997a). «-Carrageenan
suspended in water was stirred at 70 °C for an hour to be
dissolved, and the sample temperature was then lowered to
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30 °C. Water used in the preparation and in the experiments
was purified (Millipore, resistivity 18 MQ cm) after distillation.

Evaluation of k-Carrageenan Conformation. The con-
formational change in k-carrageenan in response to temper-
ature can be monitored by several methods (Piculell, 1995).
Conductivity measurement is one of the conventional tech-
niques as well as DSC or optical rotation, having been revealed
to give information identical to that from optical rotation
(Rochas and Landry, 1987). The charges on the polyion are
locally brought closer to each other on helix formation, the
charge density of the helix conformer being higher than that
of the coil conformer. Because the conductance reflects the
charge density of the polyelectrolyte, the conductance of the
system decreases with coil-to-helix transition on cooling or vice
versa. The relative value of the helical fraction of «-carrag-
eenan at temperature T is therefore calculated from the
conductance measurement:

. . . CcoiI(T) - C(T)
relative helical fraction = 1)
Ccoil(T) - Chelix(T)

where C(T) is the measured conductance at temperature T and
Ceil(T) and Cheiix(T) represent the conductance for the coil and
helix conformer at T, respectively. Ccii(T) and Cheix(T) were
calculated by extrapolating the respective temperature de-
pendence data at higher or lower temperature to T. The
transition temperature was also evaluated as the temperature
where the value of the first derivative of the temperature
dependence of the conductance, dC(T)/dT, is maximum.

The electric conductance was measured at 100 kHz using
an LCR meter (4285A, Hewlett-Packard Japan, Tokyo, Japan)
equipped with a nickel-plated parallel plate-type cell (11.3
c¢md). The conductance value in the frequency range of 1—100
kHz was almost constant, the difference between the value at
1 kHz and at 100 kHz being less than 0.05%. The specimen
cell was placed in a thermocontrolled chamber (SU220, Tabai
ESPEC, Japan). The cooling and heating rate was 0.1 °C/min.
The temperature of the sample was measured using a ther-
mocouple thermometer placed in the cell.

Dielectric Measurements. The electric capacitance and
conductance over the frequency range of 75 kHz to 14 MHz
were measured using the LCR meter equipped with the cell.
The absence of stray capacitance in the measuring system was
confirmed by measuring the capacitance of several organic
solvents the dielectric constants of which were known. The
real part ¢ of the complex dielectric constant €* (=¢' — i€")
was calculated as the ratio of the measured capacitance value
of the sample to that of the air. The imaginary part ¢ was
calculated using the value of the electric conductivity «'.

K=
€' = @
€W

where ¢ is the vacuum permittivity; «'o, the low-frequency
limit value of «'; and w, the angular frequency. The values of
«' were calibrated at each measured frequency with several
standard simple salt solutions of known conductivity. The
frequency dependence data of «' were approximated by a
trinomial expression, the constant value of which was taken
as «'o, the low-frequency limit value of «'.

The k-carrageenan solutions were fed into the specimen cell
at 25 °C. After the values of the electric capacitance and
conductance became constant, the first measurement was
done. The cell was then kept in ice water for an hour for
k-carrageenan to become a helix conformer. The cell was
placed at 25 °C once again, and the second measurement was
done after constant values of the electric capacitance and
conductance were observed. All of the dielectric measurements
were performed at 25 + 0.1 °C.

Evaluation of Dielectric Parameters. The dielectric
spectrum of polyelectrolyte solutions have been well-described
by the so-called Cole—Cole equation (Muller et al., 1974; Ito
et al., 1990; Bordi et al., 1991, 1993; Penafiel and Litoviz,
1992). The dielectric parameters, Ae and 7, were evaluated
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Figure 1. Temperature profiles of conductance during coil—

helix transition of k-carrageenan. Digits [% (w/w)] represent
the concentration of x-carrageenan.

by best-fitting the following Cole—Cole-type equation (Cole and
Cole, 1941) to the data:

. 1 _ sinh(ax)
€=t 2A€(1 cosh(ax) + cos(our/Z)) ®)
a1 sin(a/2)
c - ZAe(cosh((xx) + cos(om/Z)) @

where X is In(2w1); a, the Cole—Cole parameter (0 < o0 < 1);
and e, the high-frequency limit of the dielectric constant.

When measuring the dielectric properties of ionic materials,
substantially large values of the real part of the dielectric
constant ¢ are usually observed, especially at a lower fre-
guency. The accumulation of charges in the material on
electrode surfaces results in electrode polarization that leads
to the formation of electrode double layers (Schwan, 1968;
Grant et al., 1978; Takashima, 1989; Davey et al., 1990). The
associated capacitance and complex impedance due to this
polarization is so large that the correction for it is one of the
major requisites in obtaining meaningful measurements on
conductive samples (Davidson and Cole, 1951; Scheider, 1975;
Blythe, 1979). In this study, the dielectric constants for NaCl
or KClI solutions with the same conductivities as x-carrageenan
solutions were measured as references. The measured values
for k-carrageenan solutions only in the frequency range where
the electrode polarization effect was not observed were used
for analysis. To evaluate the dielectric parameters, the real
part € and the imaginary part €' were fitted simultaneously
to minimize the square sum of the residuals between the
measured and calculated values according to the method of
Bordi et al. (1993).

RESULTS

Figure 1 represents the temperature dependence of
conductance of «-carrageenan dispersed systems. The
conformational transition was observed as a change in
the temperature dependence of the measured conduc-
tance. The broken curves are the first derivative values
of the conductance for the 0.6% (w/w) sample. The two
transition temperatures in the course of the cooling
process, T, and in the course of the heating process,
Theat, Were determined as the temperature where the
derivative value was maximum. At any concentration,
the coil-to-helix transition occurred at a lower temper-
ature than the helix-to-coil transition (Theat > Tcoot). The
difference between the two transition temperatures
became larger with increasing concentration.
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Figure 3. Concentration dependence of the relative helical
fraction of «-carrageenan at 25 °C. In the course of the
following: A, cooling; @, heating process.

The concentration values were plotted against the
reciprocal of the transition temperature in Figure 2, this
being the so-called phase diagram of «-carrageenan.
Region | delimited by line A representing the confor-
mational change during the heating process corresponds
to the sol (disordered) phase, while region 111 delimited
by line B representing the conformational change during
the cooling process corresponds to the gel (ordered)
phase. Region Il indicates the overlap of the two regions
corresponding to the hysteresis. At 25 °C where we
investigated the dielectric properties, all the samples
were in a disordered state in the course of cooling, while
part of the samples at a higher concentration formed
helices to gel in the course of heating after the cooling
process.

Figure 3 shows the concentration dependence of the
relative helical fraction at 25 °C calculated using eq 1.
All of the k-carrageenan was in a disordered state before
cooling. For the samples after the cooling process, the
helical fraction increased with increasing concentration
in the region above 0.2% (w/w), about 97% of the
k-carrageenan forming a helix at 0.6% (w/w). The result
suggests that at 25 °C after cooling with ice water, sol-
to-gel transition will occur above 0.2% (w/w) with
increasing concentration.

As typical examples of the dielectric measurement
data, Figure 4 represents the frequency dependence of
the real part of the dielectric constant, ¢', and that of
the electric conductance, «', of a 0.2% (w/w) k-carrag-
eenan solution. The real part of the dielectric constant
€' decreased with increasing frequency, a two relaxation
process below and above 200 kHz being indicated in
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Figure 4. Dielectric relaxation spectrum of 0.2% (w/w)
k-carrageenan: @, ¢'; W, «'.

accordance with our previous results (lkeda et al.,
1997a). Because the higher frequency relaxation has
been ascribed to the fluctuation of bound counterions
(Ikeda et al., 1997a) and scaling relations for higher
frequency relaxation has been derived (Ito et al., 1990),
only the higher frequency relaxation was analyzed in
the subsequent part. The values of «' increased with
increasing frequency, being satisfactorily constant at
lower frequency to calculate accurate values of €'’ using
eq 2.

As can be seen in Figures 2 and 3, the x-carrageenan
at 25 °C was disordered at any concentration in the
course of the cooling process, while in the course of the
heating process, part of the polymers at 25 °C was in a
helical state at a higher concentration. Figure 5 shows
the dielectric spectrum for (a) the disordered (in cooling)
and (b) partly ordered (in heating) x-carrageenan sys-
tems. The experimental data were fitted well to the
Cole—Cole-type egs 3 and 4 in the higher frequency
region in accordance with our previous results for
purified «-carrageenan (lkeda et al., 1997a), the values
of the higher frequency relaxation parameters, Ae and
7, being obtained. The values for the o parameters
representing the broadness in the distribution of relax-
ation times were about 0.6—0.7 for all systems.

Figure 6a represents the concentration dependence
of the dielectric increment Ae and that of the relaxation
time 7 for the disordered «-carrageenan solutions. Each
of the parameters’ behavior was well-described by the
solid lines with a slope of O for Ae or —1 for 7 represent-
ing the scaling relations for the semidilute solutions (Ito
et al., 1990). This result was in agreement with our
preceding results on k-carrageenan with no salt added
in the semidilute region (Ikeda et al., 1997a). In Figure
6b, the concentration dependence of the dielectric incre-
ment Ae and the relaxation time 7 for the partly ordered
k-carrageenan systems are shown. At a lower concen-
tration than about 0.2% (w/w), the experimental results
agreed with the same scaling equations as those for
disordered «-carrageenan solutions. In the concentra-
tion region above 0.2% (w/w), the deviation between the
measured values and the scaling equations increased
with increasing concentration for both Ae and 7. With
increasing values of the dielectric parameters, the
system transferred to a gel as shown in Figure 2, the
helical fraction shown in Figure 3 also increasing in this
concentration region.

DISCUSSION

The gelation phenomenon of x-carrageenan is the
most extensively studied in the food polysaccharides
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because it is one of the most widely used as a gelling
agent in food industries. Not only the analysis of the
polymer network using optical rotation (Rees et al.,
1970; Rochas and Rinaudo, 1980; Rinaudo and Rochas,
1981), light scattering (Morris et al., 1980b), electron
microscopy (Hermansson, 1989; Hermansson et al.,
1991), or rheological measurement (Oakenful and Scott,
1986), but also polyion/cation interaction analysis using
NMR (Belton et al., 1986; Piculell et al., 1989; Nilsson
and Piculell, 1991) or ESR (Day et al., 1988) has been
done. However, even the gelation mechanism is still
controversial (Viebke et al., 1994). We applied the
dielectric relaxation method with scaling analysis as an
effective method for analyzing the dispersed structure
of the polymer, which is strongly related to the produc-
ing mechanism of the physical properties of the system.

The carrageenan gelation has been studied with
respect to the helix—coil transition (Piculell, 1995). It
is well-established that the associated helix conformers
form the cross-linking region in a gel. The evidence of
interhelical association is usually observed as thermal
hysteresis in the transition between cooling and heating
curves; the coil-to-helix transition occurs at a temper-
ature lower than the helix-to-coil one. The cooling
transition is considered to reflect the equilibrium be-
tween coil and helix, while the heating transition
reflects the increased thermal stability of associated
helices (Nilsson et al., 1989; Nilsson and Piculell, 1989,
1990, 1991). As shown in Figures 1 and 2, thermal
hysteresis was observed for all samples, indicating the
existence of helical association in region I11. In addition,
a sample with higher concentration showed wider
hysteresis, indicating that a larger amount of associated
helices existed in the higher concentration system.

In our preceding studies (lkeda et al., 1997a; Ikeda
and Kumagai, 1997), we applied the dielectric scaling
analysis to typical food polysaccharides, alginate and
k-carrageenan, as solutions with no added salts and
revealed that the method is effective for analyzing these
polymer solution structures in the dilute and semidilute
regions. For the disordered state «-carrageenan with
potassium salt, the concentration dependence of the two
dielectric parameters, Ae and 7, were satisfactorily
described by the scaling equations for the semidilute
solutions, as can be seen in Figure 6a. These solutions
were considered in the vicinity of the sol—gel transition
point because all of these solutions gelled on cooling
(Figure 2). Additionally, as shown in Figure 6b, the
k-carrageenan dispersed systems in the course of the
heating process were in the semidilute region at a
concentration lower than ca. 0.2% (w/w). These systems
transformed into gels with increasing concentration, and
the dielectric parameters were no longer described by
the scaling equations for the semidilute solutions.
Therefore, it turned out that the disordered «-carrag-
eenan dispersed system formed a structure typified as
a semidilute solution, in which the extended polymer
chains overlap, even in the vicinity of the sol—gel
transition point. Gelation of a semidilute polymer
solution is also a controversial subject in polymer science
(Allain and Salomé, 1990). It is generally considered
that polymer dispersed structure in linear polyelectro-
lyte solutions is categorized as to concentration, that
is, dilute, semidilute, and then a blob region with
increasing concentration (De Gennes, 1976; Odijk,
1979). In the blob region, the polymer chain looks like
a folded sphere because the charges on the polyelectro-
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lyte chain are shielded due to high ionic concentration.
However, for k-carrageenan at least, it is suggested that
the semidilute solution gels before forming a blob
structure with increasing concentration.

For the helical state «-carrageenan, the values of
dielectric parameters, Ae and 7, became larger than
those predicted by the scaling equations for the semi-
dilute solutions, as can be seen in Figure 6b. Moreover,
the deviation between the measured and predicted
values increased with increasing concentration, the
helix formation shown in Figures 3 and the association
of helices shown in Figure 2 also proceeding. The
formation of the helical association would influence the
dielectric parameters as follows:

() The dielectric increment Ae increases with increas-
ing bound counterion concentration due to the high
charge density of the helical association.

(1) The relaxation time 7 increases with increasing
distance between the adjacent polymers due to the
apparent decreasing polymer concentration.

An apparent decrease in polymer concentration due
to association of the polymer chains has been observed
in calcium alginate solutions (Ikeda et al., 1997a). One
can estimate the apparent concentration of the polymer
Capp Using the measured value of the relaxation time 7
and the scaling equation for semidilute solutions. The
apparent degree of association N would then be esti-
mated as N = C/Capp. In Figure 7, the dielectric
parameters were plotted against the calculated appar-
ent degree of association N. Although the details of the
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Figure 7. Comparison of Ae and 7 with the apparent degree
of helical association N.

mechanism must be investigated more accurately, the
results in Figure 7 represent a good indication that the
dielectric parameters reflect the association phenom-
enon of the helical x-carrageenan.

Consequently, the dielectric relaxation was an effec-
tive method for analyzing the change in the dispersed
structure of the food polysaccharide accompanied by the
sol—gel transition of the system. Many natural poly-
mers with the ability to form a gel, e.g., agarose, gellan
gum, or gelatin, have one essential feature in common,
namely, following a scheme very similar to that of
k-carrageenan. To gain further insight into the gelation
mechanism of these polysaccharides, a separate inves-
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tigation on the dielectric response to helix formation and
its association would be necessary.
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